CALCIUM-DEPENDENT RELEASE OF ARACHIDONIC ACID FROM A MURINE EPIDERMAL CELL LINE INDUCED BY THE TUMOR PROMOTER TPA OR IONOPHORE A 23187

Dissection of ionophoretic and phospholipase A₂-stimulating activity

M. GANSS, D. SEEMANN, G. FÜRSTENBERGER and F. MARKS

Deutsches Krebsforschungszentrum (German Cancer Research Center), Institut für Biochemie, Im Neuenheimer Feld 280, 6900 Heidelberg, FRG

Received 2 April 1982

1. Introduction

Mouse skin in vivo responds to injury and to a wide variety of chemical agents, including tumor promoting phorbol esters and the divalent cation ionophore A 23187, by inflammation and epidermal hyperproliferation (hyperplasia, [1,2]). The latter reaction depends on a short pulse of prostaglandin E_2 synthesis occurring in epidermis within 15 min of stimulation [2,3].

A rapid stimulation of prostaglandin synthesis by TPA is also observed in epidermal cell cultures, including the continuously-growing line HEL/30 [4-6]. This offers the possibility of studying the reaction in more detail.

TPA- and ionophore A 23187-induced prostaglandin synthesis is due to a phospholipase A₂-catalyzed release of arachidonic acid from phospholipids [7–13]. Here, we show that the TPA- and A 23187-induced arachidonic acid release in HEL/30 cells has an absolute requirement for extracellular Ca²⁺, but is not coupled with a measurable uptake of ⁴⁵Ca²⁺ by the cells.

2. Materials and methods

[1-¹⁴C] Arachidonic acid (56.3 mCi/mmol) and ⁴⁵Ca²⁺ (2.29 Ci/mmol) were purchased from New England Nuclear (Boston MA). The ionophore A 23187 was obtained from Calbiochem (Giessen); tetracaine, valinomycin, monensin, carbonyl cyanide, *m*-chlorophenylhydrazone (CCCP), and ethyleneglycol-bis-(β-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) were obtained from Sigma (Munich). We are grateful to Pro-

fessor Dr E. Hecker, German Cancer Research Center (Heidelberg) for supplying us with TPA and to Knoll-BASF AG (Ludwigshafen) for a gift of verapamil.

The murine epidermal cell line HEL/30 [4] was maintained in 10 cm (Falcon) plastic petri dishes in minimum essential medium with a 4-fold concentration of amino acids (4 × MEM), 2 mM $\rm Ca^{2+}$, supplemented with 10% fetal calf serum (Seromed, Munich) and containing antibiotics (penicillin, 100 IU/ml; streptomycin, 100 $\mu \rm g/ml$) at 30°C. All incubations were performed in a humidified atmosphere of 5% $\rm CO_2$. The calcium of the fetal calf serum was removed by passing serum through a Chelex 100 column (Biorad). To obtain 'low calcium medium', this serum was mixed to 10% with $\rm Ca^{2+}$ -free 4 × MEM. The final $\rm Ca^{2+}$ content of the low calcium medium was $\rm 2 \times 10^{-7}$ M as measured by atomic-absorption spectrophotometry.

For the experiments, 5×10^5 cells were plated into 35 mm plastic dishes (Falcon) and grown in 1.5 ml 4 × MEM containing 10% fetal calf serum (culture medium) at 34°C for 4 days, i.e., until confluency was reached (4 × 10⁶ cells/dish). Culture medium was changed 24 h after plating. For the assays the culture medium was replaced by fresh culture medium containing either 0.5% acetone or ethanol, or a solution of various concentrations of TPA, ionophore A 23187, valinomycin, monensin and CCCP in acetone. For the experiments in media with defined [Ca2+] the cells were washed with Dulbecco's PBS (without Ca2+ and Mg²⁺) containing 1 mM EGTA (pH 7.4). The cells were then washed 3 times with PBS to remove EGTA and incubated in culture medium with defined Ca2+concentrations.

To assay the release of arachidonic acid, the cells were prelabelled with $0.2 \,\mu\text{Ci/ml} \, [1^{-14}\text{C}]$ arachidonic acid for $9-14 \, \text{h}$, i.e., until reaching the plateau phase of the labelling kinetics. The assay for arachidonic acid released into the medium is detailed in [4].

For the 45 Ca $^{2+}$ -influx experiments, 10^5 cells were plated in each hole of 24 cluster multiwells (Costar) and grown as above. After 4 days, the cells were washed with Dulbecco's PBS (without Ca $^{2+}$ and Mg $^{2+}$) containing 1 mM EGTA (pH 7.4). To remove the EGTA, the cells were washed with PBS 3 times and incubated with culture medium containing 2 μ Ci/ml 45 Ca $^{2+}$ for various time intervals. Incubations were stopped by removing the medium and washing the cells 3 times with 20 mM CaCl₂ in isotonic NaCl. Cells were dissolved in 1 ml 0.1 M NaOH for 1 h at 37°C and 0.5 ml of the resulting solution was counted for radioactivity.

3. Results and discussion

When added to continuously-growing HEL/30 cells, both TPA and the ionophore A 23187 stimulated the release of arachidonic acid into the culture medium in a time- and dose-dependent manner after a lag phase of 10–15 min (fig.1). On a molar basis, A 23187 was 3-times more effective than TPA. Monovalent cation ionophores such as the sodium-ionophore monensin, the potassium-ionophore valinomycin, as well as the protonophore CCCP did not show such an effect (table 1). Therefore, the stimulation of arachidonic acid release may be due to the well known ability of A 23187 to facilitate the transport of divalent cations, most probably Ca²⁺, across cell membranes [14].

The TPA- and A 23187-induced arachidonic acid release depended on the extracellular $[Ca^{2+}]$ (fig.2). Whereas stimulation by A 23187 reached a plateau at physiological $[Ca^{2+}]$ (~1 mM), the TPA-induced activation increased further at higher $[Ca^{2+}]$. The stimulatory effect of both drugs was completely inhibited when the normal culture medium was replaced by 1ow Ca^{2+} medium' (10^{-7} M Ca^{2+}) or after complexing free Ca^{2+} by EGTA. The effect was re-established upon addition of Ca^{2+} , but not of Mg^{2+} (table 2).

Our data indicate that TPA as well as A 23187 induced a Ca²⁺-dependent activation of phospholipase A₂ by facilitating the influx of extracellular Ca²⁺ into cells, rather than releasing Ca²⁺ from intracellular Ca²⁺-pools [15]. To confirm this, influx studies with

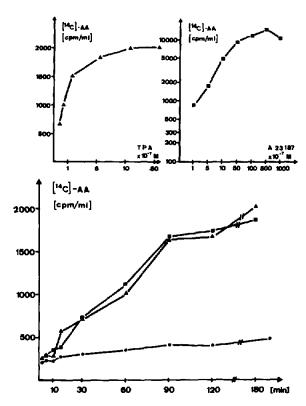


Fig.1. Time courses of the accumulation of arachidonic acid in the culture medium of HEL/30 cell treated with TPA and A 23187. Cultures prelabelled with $[1^{-14}C]$ arachidonic acid were treated with 1.6×10^{-6} M TPA (\blacktriangle), 5×10^{-7} M A 23187 (\blacksquare) or acetone (\bullet , controls) at zero time. At the times indicated, 1 ml culture medium was removed and processed as in [4]. Insert: dose—response curves for the effects of TPA and A 23187 on arachidonic acid release as measured after 90 min. Each point is the mean of 6 assays (duplicate assays from 3 different experiments), SD \lt 15%.

Table 1
Stimulation of arachidonic acid release after addition of various ionophores

Compound	Dose (M)	Arachidonic acid release (cpm/ml medium)	
Solvent		2014	
A 23187	5×10^{-7}	4387	
Monensin	10-6	2349	
Valinomycin	10-6	1932	
CCCP	10-6	1826	

Cultures prelabelled with [1-14C] arachidonic acid were treated with A 23187, monensin, valinomycin and CCCP, dissolved in acetone or ethanol (final conc. 0.5%) or acetone and ethanol (controls) at zero time. After 90 min, the culture media were removed and processed as in [4]. Each value represents the mean of 5 assays, $SD \ge 15\%$

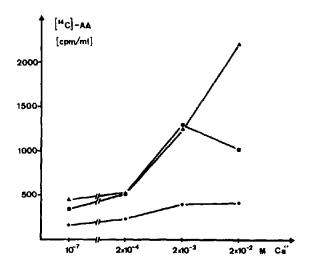


Fig. 2. Effect on increasing [Ca²⁺] on the release of arachidonic acid into the culture medium of HEL/30 cells after treatment with TPA and A 23187. Cultures prelabelled with [1-1⁴C] arachidonic acid were washed free of Ca²⁺ (section 2) and treated with 1.6×10^{-6} M TPA (a), 5×10^{-7} M A 23187 (a) or acetone (e, controls) in media containing increasing [Ca²⁺]. After 90 min, 1 ml culture medium was removed and processed as in [4]. Each point is the mean of 3 dishes of 1 of 2 expt, SD \leq 15%.

⁴⁵Ca²⁺ were carried out. The effects of TPA and A 23187 on the influx of ⁴⁵Ca²⁺ into HEL/30 cells are depicted in fig.3. At 10⁻⁵ M A 23187 elicited a sharp increase of Ca²⁺ influx, reaching a maximum after 15 min. Under steady-state conditions [16], i.e., after preincubation of HEL/30 cells with A 23187, addition of ⁴⁵Ca²⁺ led to the same results (not shown). When the dose of A 23187 was lowered to 10⁻⁶ M, no

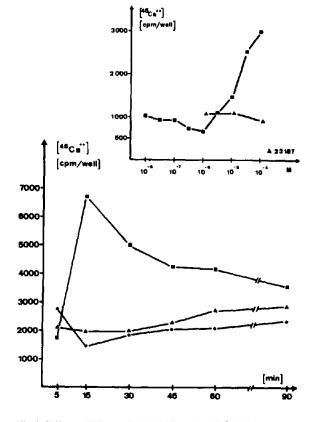


Fig.3. Effect of TPA and A 23187 on the Ca²⁺-influx into HEL/30 cells. Cells were washed free of Ca²⁺ (section 2) and incubated with culture medium containing 2 μ Ci ⁴⁵Ca²⁺/ml and 1.6 × 10⁻⁶ M TPA (\blacktriangle), 5 × 10⁻⁷ M A 23187 (\blacksquare) or acetone (\blacksquare , controls). After the times indicated, the incubation was stopped by removing media and determination of the ⁴⁵Ca²⁺-content of the cells as in section 2. Insert: dose—response curves for the effects of TPA and A 23187 on ⁴⁵Ca-influx into cells as measured after 15 min. Each point represents the mean of 4 assays of 1 of 3 expt, SD \le 15%.

Table 2

Effect of Ca²⁺ on the TPA- and A 23187-induced release of arachidonic acid (cpm/ml medium)

Treatment (dose)	Control medium	Low Ca ²⁺	Low Ca ²⁺ + Mg ²⁺	Low Ca ²⁺ + Ca ²⁺	EGTA	EGTA + Ca ²⁺
Acetone	570	380	360	480	470	890
TPA 1.6 × 10 ⁻⁶ M	1700	690	550	2330	520	2780
A 23187 5 \times 10 ⁻⁷ M	1730	450	520	1350	510	3080

Cultures prelabelled with $\{1^{-14}C\}$ arachidonic acid were washed free of Ca^{2+} (section 2) and incubated with normal culture medium, low Ca^{2+} -medium (without Mg^{2+}), low Ca^{2+} -medium supplemented with Mg^{2+} (2×10^{-7} M) or Ca^{2+} (2×10^{-3} M), normal medium supplemented with EGTA (2.5×10^{-3} M) or EGTA + Ca^{2+} (5×10^{-3} M), each containing 1.6×10^{-6} M TPA, 5×10^{-7} M A 23187 or acetone (controls) at zero time. After 90 min, the culture media were removed and processed as in [4]. Each value represents the mean of 4 assays of 1 of 2 expt, SD > 15%

Table 3

Effect of tetracaine and verapamil on TPA- and A 23187-induced release of arachidonic acid (cpm/ml medium)

Treatment (dose)	Preincubation with				
	Acetone	Tetracaine (5 × 10 ⁻⁴ M)	Verapamil (5 x 10 ⁻⁴ M)		
Acetone (control)	480	970	507		
TPA $(1.6 \times 10^{-6} \text{ M})$	1810	750	635		
A 23187 (5 \times 10 ⁻⁷ M)	2150	1380	570		
A 23187 (10 ⁻⁵ M)	4150	1780	980		

Cultures prelabelled with $[1^{-14}C]$ arachidonic acid were preincubated with tetracaine or verapamil for 15 min. TPA or ionophore dissolved in acetone (final conc. 0.5%) or acetone (controls) were added at zero time. After 90 min, the culture media were removed and processed as in [4]. Each value represents the mean of 4 assays (duplicate assays from 2 different expt), SD \leq 15%

Ca²⁺ influx was observed. Contrary to the ionophore, TPA did not evoke any ⁴⁵Ca²⁺ influx over the whole dose range tested.

Neither the phorbol ester nor the ionophore exhibited a measurable effect on Ca²⁺ influx at concentrations sufficient to stimulate arachidonic acid release. Since the latter reaction has an absolute requirement for extracellular Ca²⁺, it may be concluded that the stimulation of phospholipase A₂ was due to a mobilization of cell surface-bound Ca²⁺ rather than to an increase of the cytoplasmic Ca²⁺ content. This conclusion was supported by the observation that stimulation of arachidonic acid release by either TPA or A 23187 could be prevented by verapamil or tetracaine (table 3). Both drugs are reported to interact with Ca²⁺ binding sites at cell surfaces [17,18].

TPA [7-9] as well as A 23187 [10-13] have both been shown to stimulate phospholipase A2 activity not only in epidermis cells but also in other cell types. In the case of A 23187, this has been ascribed to the ionophoretic activity of the compound [14]. Our results do not confirm this assumption but support the results [19] that A 23187 is able to exert biological effects (in this case the activation of lymphocytes) at concentrations which do not alter the cytoplasmic Ca2+-level. Moreover, the phorbol ester TPA did not show any ionophoretic effect even at high concentrations. This observation agrees with the finding that TPA is unable to stimulate the degranulation of mast cells in vitro [2], a process thought to be dependent on an increase of the cytoplasmic Ca2+ content. In addition, TPA-induced histamine release from polymorphonuclear leukocytes is provoked by secondary products such as arachidonic acid metabolites rather than by the phorbol ester itself [20]. Finally, in myoblasts TPA has even been found to inhibit Ca^{2+} influx [21]. These results indicate that TPA and A 23187 stimulate phospholipase A_2 activity in epidermal cells by means other than enhancement of Ca^{2+} -influx into the cytoplasm.

Acknowledgements

We thank Dr R. Link for determination of the Ca²⁺ content of culture media and Eva Besemfelder and Ingeborg Vogt for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft and the Wilhelm- and Maria-Meyenburg Foundation.

References

- [1] Marks, F., Berry, D. L., Bertsch, S., Fürstenberger, F. and Richter, H. (1982) in: Carcinogenesis (Hecker, E. et al. eds) vol. 7, pp. 331-346, Raven, New York.
- [2] Marks, F., Fürstenberger, G. and Kownatzki, E. (1981) Cancer Res. 41, 696-702.
- [3] Fürstenberger, G. and Marks, F. (1980) Biochem. Bio-Phys. Res. Commun. 92, 749-756.
- [4] Fürstenberger, G., Richter, H., Fusenig, N. E. and Marks, F. (1981) Cancer Lett. 11, 191-198.
- [5] Fürstenberger, G., Delescluse, C., Fischer, S. M., Richter, H. and Marks, F. (1982) in: Carcinogenesis (Hecker, E. et al. eds) vol. 7, pp. 325-329, Raven, New York.

- [6] Hammarström, S., Lindgren, I. A., Marcelo, C., Duell, F. A., Anderson, Th. F. and Voorhees, J. J. (1979) J. Invest. Dermatol. 73, 180-183.
- [7] Levine, L. and Hassid, A. (1977) Biochem. Biophys. Res. Commun. 79, 477-484.
- [8] Mufson, R. A., Defeo, D. and Weinstein, I. B. (1979) Mol. Pharmacol. 16, 569-578.
- [9] Hong, S. L. and Deykin, D. (1979) J. Biol. Chem. 254, 11463-11466.
- [10] Pickett, W. C., Jesse, R. L. and Cohen, P. (1977) Biochim. Biophys. Acta 486, 209-213.
- [11] Shier, W. T. (1980) Proc. Natl. Acad. Sci. USA 77, 137-141.
- [12] Rittenhouse-Simmons, S. and Deykin, D. (1977) J. Clin. Invest. 60, 495-498.
- [13] Knapp, H. R., Oelz, O., Roberts, L. J., Sweetman, B. J., Oates, J. A. and Reed, P. W. (1977) Proc. Natl. Acad. Sci. USA 74, 4251-4255.

- [14] Pressman, B. C. (1977) Annu. Rev. Biochem. 45, 501-530.
- [15] Van den Bosch, H. (1980) Biochim. Biophys. Acta 604, 191-246.
- [16] Borle, A. B. (1981) Cell Calcium 2, 187-196.
- [17] Low, Ph. S., Lloyd, D. H., Stein, Th. M. and Rogers, J. A., iii (1979) J. Biol. Chem. 254, 4119-4125.
- [18] Singh, B. N., Ellrodt, G. and Peter, C. Th. (1978) Drugs 15, 169-197.
- [19] Hesketh, T. R., Smith, G. H., Housley, M. D., Warren, G. B. and Metcalfe, J. C. (1977) Nature 267, 490-494.
- [20] Schleimer, R., Gillespic, E. and Lichtenstein, L. M. (1980) Fed. Proc. FASEB 39, 692.
- [21] Schimmel, S. D. and Hallman, H. (1980) Biochem. Biophys. Res. Commun. 92, 624-630.